If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x^2+56x-20)=0
We get rid of parentheses
4x^2+56x-20=0
a = 4; b = 56; c = -20;
Δ = b2-4ac
Δ = 562-4·4·(-20)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-24\sqrt{6}}{2*4}=\frac{-56-24\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+24\sqrt{6}}{2*4}=\frac{-56+24\sqrt{6}}{8} $
| p−21=56 | | 13t−4t+–12t+–12=9 | | k-40=11 | | 49+(x*x)=169 | | 2=u-88 | | 6(x+11)=2(3x+8) | | 7x+10=-6x+62 | | 4x+6=1x+5 | | 4x+24=-14 | | 2x+28+6(x-2)=0 | | f+1=99 | | -0.47x+0.27x=4.6 | | 3x+2x+7=37 | | 33=h-47 | | 225+(x*x)=256 | | 42=y-71 | | 9=w+20/4 | | 16=(3-m)2 | | 6d^2=150 | | 33=h-7 | | 2x+28+6(x-2=0 | | M(p-4)=20 | | 9+(x*x)=64 | | p-29=35 | | x-5^2=40 | | 24+5u=64 | | 16+x(x)=81 | | s+1=20 | | 4x-13=-3x+1 | | (x-5)2=40 | | x/6=4/x | | 18p+7p-6p+-17p=18 |